Cytoplasmic dynein-associated structures move bidirectionally in vivo.

نویسندگان

  • Shuo Ma
  • Rex L Chisholm
چکیده

Intracellular organelle transport is driven by motors that act upon microtubules or microfilaments. The microtubulebased motors, cytoplasmic dynein and kinesin, are believed to be responsible for retrograde and anterograde transport of intracellular cargo along microtubules. Many vesicles display bidirectional movement; however, the mechanism regulating directionality is unresolved. Directional movement might be accomplished by alternative binding of different motility factors to the cargo. Alternatively, different motors could associate with the same cargo and have their motor activity regulated. Although several studies have focused on the behavior of specific types of cargoes, little is known about the traffic of the motors themselves and how it correlates with cargo movement. To address this question, we studied cytoplasmic dynein dynamics in living Dictyostelium cells expressing dynein intermediate chain-green fluorescent protein (IC-GFP) fusion in an IC-null background. Dynein-associated structures display fast linear movement along microtubules in both minus-end and plus-end directions, with velocities similar to that of dynein and kinesin-like motors. In addition, dynein puncta often rapidly reverse their direction. Dynein stably associates with cargo moving in both directions as well as with those that rapidly reverse their direction of movement, suggesting that directional movement is not regulated by altering motor-cargo association but rather by switching activity of motors associated with the cargo. These observations suggest that both plus- and minus-end-directed motors associate with a given cargo and that coordinated regulation of motor activities controls vesicle directionality.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discovery of a vezatin-like protein for dynein-mediated early endosome transport

Early endosomes are transported bidirectionally by cytoplasmic dynein and kinesin-3, but how the movements are regulated in vivo remains unclear. Here our forward genetic study led to the discovery of VezA, a vezatin-like protein in Aspergillus nidulans, as a factor critical for early endosome distribution. Loss of vezA causes an abnormal accumulation of early endosomes at the hyphal tip, where...

متن کامل

Dynein-mediated Cargo Transport In Vivo: A Switch Controls Travel Distance

Cytoplasmic dynein is a microtubule-based motor with diverse cellular roles. Here, we use mutations in the dynein heavy chain gene to impair the motor’s function, and employ biophysical measurements to demonstrate that cytoplasmic dynein is responsible for the minus end motion of bidirectionally moving lipid droplets in early Drosophila embryos. This analysis yields an estimate for the force th...

متن کامل

Dynein-Mediated Cargo Transport in Vivo

Cytoplasmic dynein is a microtubule-based motor with diverse cellular roles. Here, we use mutations in the dynein heavy chain gene to impair the motor's function, and employ biophysical measurements to demonstrate that cytoplasmic dynein is responsible for the minus end motion of bidirectionally moving lipid droplets in early Drosophila embryos. This analysis yields an estimate for the force th...

متن کامل

Transport of Drosophila fragile X mental retardation protein-containing ribonucleoprotein granules by kinesin-1 and cytoplasmic dynein.

Transport and translation of mRNA are tightly coupled to ensure strict temporal and spatial expression of nascent proteins. Fragile X mental retardation protein (FMRP) has been shown to be involved in translational regulation and is found in ribonucleoprotein (RNP) granules that travel along dendrites of neurons. In this study, GFP-tagged Drosophila homologue of FMRP (dFMR) was used to visualiz...

متن کامل

Kinesin and dynein move a peroxisome in vivo: a tug-of-war or coordinated movement?

We used fluorescence imaging with one nanometer accuracy (FIONA) to analyze organelle movement by conventional kinesin and cytoplasmic dynein in a cell. We located a green fluorescence protein (GFP)-tagged peroxisome in cultured Drosophila S2 cells to within 1.5 nanometers in 1.1 milliseconds, a 400-fold improvement in temporal resolution, sufficient to determine the average step size to be app...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of cell science

دوره 115 Pt 7  شماره 

صفحات  -

تاریخ انتشار 2002